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Cavity surface wave patterns and general appearance 

By CHRISTOPHER BRENNEN 
California Institute of Technology Pasadena, California 

(Received 19 August 1968 and in revised form 9 January 1970) 

Observations were made of the appearance of hydrodynamic cavities behind 
a series of axisymmetric headforms. Among the phenomena investigated was 
the transition of the interfacial or separated boundary layer on the cavity 
surface. The first stage of this process, namely the spatial growth of instability 
waves could be distinguished by means of high-speed photography. Comparison 
is made with a theoretical instability analysis. 

1. Introduction 
The surface appearance of a fully developed cavity, or more specifically, the 

nature of the separated interfacial boundary layer, can have important side 
effects. The rate of diffusion of dissolved gas and/or heat into the cavity will be 
much greater when the interfacial layer becomes turbulent; this, in turn, may 
lead to increased cavity pressures (Brennen 19693). Thus a qualitative study 
was made of the surface of cavities behind a series of axisymmetric headforms 
and the results of these experiments are discussed in the first part of this paper. 
When transition occurs on the cavity surface, the first stage of that process, 
namely growth of a select frequency instability produces a pattern of surface 
waves which are clearly visible in the high-speed photographs. In  the latter part 
of this paper these wave patterns are studied in some detail and comparison 
is made with a theoretical, linear stability analysis of the separated boundary 
layer. 

The experiments, which were carried out in the no. 2 water tunnel of Ship 
Division, N.P.L., employed various rotationally symmetric shapes of headform 
supported on the axis of the tunnel by a sting and strut system described in 
earlier papers (Brennen 1969a, b ) .  Although the investigation was limited to 
axisymmetric bodies, some of the findings are expected to be qualitatively 
applicable to other types of fully cavitating flow. 

Still photographs were taken with equipment giving a flash of some 10-t 30psec 
duration; thus the fluid motions were ‘frozen’ even at  the highest tunnel velocity 
( N 50 ft./sec). The experimental arrangement included provision for ventilating 
the cavities with measured flow rates of air and for measuring the cavity pressure 
as described in the earlier papers cited above. The normal tunnel equipment was 
used for measurement of tunnel pressure, velocity and temperature. The cavita- 
tion number and other data relevant to  each photograph could thus be com- 
puted. Five different headforms were employed: (a)  a 3in. diameter sphere 
(figures l ( b )  and (c), plate 1); ( b )  a 3in. diameter sphere cut off along a plane 
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through the latitudinal line 68 degrees from the theoretical front stagnation 
point (referred to as the ‘cut-away’ sphere) (figures l ( e )  and (f), plate 1); 
(c) a 19in. diameter hemispherical head placed on the end of the sting which was 
of the same diameter (figure 2(a), plate 2);  (d )  an ogival-shaped head of axial 
length 3iin. and base diameter 2-34in. (figures l ( a )  and (d ) ,  plate l), whose 
shape corresponded to that of a theoretical semi-infinite ‘body’ created by a 
particular axial source distribution ; thus an approximate wetted sur€ace pressure 
distribution could be calculated; ( e )  a 3 in. diameter disk set normal to the stream 
(figure 2 (b ) ,  plate 2). 

2. Surface appearance of cavities 
For each of the five headforms photographs of both natural and ventilated 

cavities were taken at  a series of tunnel velocities, U,, the tunnel pressure taking 
roughly its lowest operational value in all cases. It was apparent not only in the 
photographs but also to the naked eye that the appearance of the cavity surface 
was markedly different depending on whether the cavity was or was not filled 
with the turbulent froth of bubbles and water associated with the re-entrant jet. 
Clearly there were intermediate states of incomplete filling; however, it should 
suffice to describe the completely filled and the ‘fully developed’ cases. 

Figures 1 (a )  and (b ) ,  plate 1 represent examples of the former type, referred to 
as being partially developed and confined almost exclusively to the natural cavity 
flows. Ventilation seemed to produce either a train of bubbles from the exit holes 
or a fully developed cavity flow (as defined below) with virtually no intermediate 
state. The following observations seemed generally applicable to the ‘filled’ 
cavities: (i) The ogive and the cut-away sphere (both of which have a sharp, 
separating edge) produced ‘filled’ cavities typified by figure 1 (a). The charac- 
teristic gap of clear water between the base of the headform and the cavity is a 
somewhat surprising feature. In  other photographs the gap may not have 
extended right to the centre of the base but always appeared near its periphery. 
The irregularities of the surface of the cavity do seem on examination to contain 
a characteristic frequency or wavelength which may be associated with a vortex 
shedding frequency from the sharp trailing edge of the head form (these fre- 
quencies are considerably smaller than those discussed in the later part of the 
paper). (ii) Under the same conditions the two spheres, having no sharp 
‘ separating ’ edge, produced partially developed cavities which were much less 
steady (figure 1 (b )  being a typical example) and could be adequately described 
as being in an advanced state of incipient cavitation. 

A cavity was considered to be ‘fully developed’ when the region just behind 
the headform became a single gaslvapour filled space; that is when the re-entrant 
jet no longer penetrated forward to the back of the body. As the length of the 
cavity further increases the proportion of cavity filled by the jet clearly decreases. 
It was incidentally observed that the ‘strength’ and penetration of the jet 
within a natural cavity was noticeably greater than for a ventilated cavity under 
identical conditions of tunnel velocity and cavity length. This may be associated 
with the different mass rates of vapour and gas entrainment into the wake as 
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discussed in an earlier paper (Brennen 1969 b) .  Whenever the jet impinged on the 
cavity wall the latter became rough, unsteady and opaque as in the bottom left- 
hand corner of figure 1 (c). 

Attention will now be focused exclusively on the nature of cavity surfaces 
which are unaffected by such interference. The singular appearance of the inter- 
face just downstream of separation was first noted in photographs of the 3in. 
sphere, figure 1 (c) being a typical example. Immediately following separation 
the surface is smooth and glassy. Downstream of this waves with crests running 
perpendicular to the direction of flow grow on the clear surface until they break 
up to form the rough or turbulent surface which persists along the rest of the 
length of the cavity. The naked eye could detect the two regions of smooth and 
turbulent surface though not the intervening wave pattern. Also visible in the 
case of the 3in. sphere were the longitudinal striations which, especially near 
separation tended to disturb the described pattern (see figure 1 ( c ) ) .  These stria- 
tions may have been caused by small drops of water (from condensation or the 
spray of the re-entrant jet) being trapped in the very thin cavity just after 
separation. The drops and associated striations continually moved downwards 
under the influence of gravity. No such thin cavity region occurs with the 
cutaway sphere or ogive and, as can be seen from figures 1 ( d )  and 1 ( e ) ,  there are 
no striations. Similar, but fixed, striations can be caused by irregularities in the 
headform at or near separation (Gadd & Grant 1965). 

3. Further observation of the wave patterns 
The waves observed shortly after separation have been noticed by some 

previous experimenters (for example, Acosta & Hamaguchi 1967) though to the 
author’s knowledge no particular investigation has previously been made of 
them. They represent the cavity flow equivalent of the instabilities in the free 
shear layer of a one-phase wake flow. Waugh & Stubstad (1956) observed some- 
what similar wave patterns on the surface of water-entry cavities. However, their 
waves appear to have been caused by longitudinal vibration of the disk-faced 
missile immediately following impaot ; with further submergence the cavity 
produced is smooth and similar to that of figure 2 (b),  plate 2. 

The present investigation involved studies of the wave patterns through still 
photographs and movie films, the results being listed below. 

Still photographs 

For a particular headform the wavelength, A, and the distance from separation 
to wave break up, XI, appeared to be functions only of the ‘potential free 
streamline velocity’, U, = U,( 1 + a)&, both increasing as this velocity decreased 
(a  = (pT-pc)/&pU2 is the cavitation number). Changing the tunnel or cavity 
pressure (pT or p J  only affected the pattern indirectly by altering a. Since fully 
developed cavities are restricted to a limited range of cr (about 0 < a < 0.5) the 
principal variation was with tunnel velocity, U,. 

Further tests showed that ventilating the cavities had no observable effect 
upon the wave pattern beyond the change in U,. Thus the phenomenon could be 
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studied a t  tunnel speeds down to about lOft./sec where it was not possible to 
create fully developed natural cavities. 

With the 3in. and cutaway spheres wave break up ceased to occur when the 
tunnel speed was reduced below about 14ft./sec and the waves persisted along 
the length of the cavity (figure 1 (f )). In  the case of the l+in. sphere the critical 
speed was about l7ft./sec (see figure 2(a ) )  though for this headform the wave 
patterns were not so remarkably regular as in the cases of the larger spheres. This 
may have been due to surface disturbances caused by the ventilation air which 
is emitted radially rather than in the downstream axial direction of the other 
headforms. With the ogive, transition occurred a t  all tunnel speeds (figure 1 (d) ) .  
However, the last headform, the 3 in. disk, produced completely clear cavities 
(as in figure 2 ( b ) )  under all conditions. Some tests were carried out to determine 
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FIGURE 3. Variation of measured wavelengths, A,  with tunnel velocity, UT : 0, 3 in. 
sphere; A, cutaway sphere; m, 14 in. sphere; x , ogive. 

whether by artificially increasing the noise level in the attached boundary layer 
an instability could be excited. Figures 2 (c) and ( d )  were the results of two crude 
attempts to do this; the results are clearly inconclusive since frequencies of vortex 
shedding from the disturbers (a row of pegs in figure 2 (c), a square-sectioned ring 
in figure 2 ( d ) )  may be reflected in the free surface. 

From each photograph measurements were made of h and X,. The distance 
from separation to the point at  which h was measured was also recorded. The 
X ,  measurement was somewhat arbitrary, especially for the ogive cavities, 
However, in most cases, a study of the profile of the cavity indicated a fairly 
distinct wave break-up point. In  figures 3 and 4, h and X, are plotted non- 
dimensionally against a Reynolds number, U, Dlv (D being the diameter of the 
sphere or of the base of the ogive). 
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FIGURE 4. Variation of measured distance to wave break up, XI, with tunnel velocity, 
UT: --a- -, 3 in. sphere; -A-, cutaway sphere; --m--, l#in. sphere; x ,  ogive. 
Speeds for which virtually no break up occurred are mrarked with the arrows. 

Movie photography 

It was clearly of interest to attempt to measure the propagation velocities of the 
waves by taking high-speed movie films of the flow. Using a Fastax camera the 
filming speed was limited to a maximum of about 4000 frameslsec because of the 
difficulty in beaming enough light on the subject through large Perspex windows 
and 2ft. of water. This filming speed, in turn, set an upper limit on the tunnel 
velocity (about 20 ft./sec) for which the movement of individual waves between 
successive frames could be satisfactorily discerned. However for flow conditions 
similar to those of figures 1 ( e )  and ( f ) ,  wave velocities could be estimated from 
a study of about 12 successive frames. Within the order of accuracy of measure- 
ment (about 5 %) no difference could be distinguished between the wave velocity 
and the potential free surface velocity, U,. This is not surprising in the light of 
the following simple calculation. Under the influence of surface tension, S, and 
a centripetal acceleration given by Ug( 1 + u)/R* where R* is the longitudinal 
curvature of the interface, a dynamic wave would have a velocity relative to the 
fluid motion of 

In  the case, for example, of the cutaway sphere the first and second terms within 
the bracket would be of the order of 0.002 and 0.1 ft.2/sec2 respectively and the 
relative wave velocity would be small. 

4. Stability analysis of the separated boundary layer 
Stability analysis of the separated boundary layer is considerably simplified 

by using the planar flow model of figure 5 .  The model is expected to be fairly 
accurate since (1) both the distance of the separation point from the axis and the 
longitudinal radius of curvature are large compared with the boundary-layer 
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thickness and (2) the free surface is not far from parallel with the axis (except in 
the case of the disk). Then assuming constant cavity pressure and that the 
vapourlgas exerts a negligible shear stress, the conditions at  the interface are 
those of constant normal and zero tangential stress. In addition, the momentum 
thickness is assumed to remain unaltered after separation. The mean flow is 
therefore similar to that in the wake of a thin flat plate (Sat0 & Kuriki 1961). 

Uniform stream 
velocity, U, 

t' Velocity 
distribution 

Constant momentum 

Boundary layer thickness, J2 

Free surface 
Wetted surface I 

I 
Separation 

Cavity 

FIGURE 5 .  Mathematical model of boundary-layer flow at and following separation. 

Non-dimensional co-ordinates are defined as x = XIS,, y = Y/S, and t = U, T/6, 
(T being time); the ratios of the velocities in the X ,  Y directions to U, and of the 
pressure topv, are denoted by u*, v* andp* respectively. Following conventional 
linearized procedure and assumptions (see, for example, Betchov & Criminale 
1967) the flow is split into mean and perturbation components 

(2) I u*(x, y, t )  = u(x,  y) + ul(y) eia(z-et) 

p*(x ,  y, t )  = p ( y )  +p , ( y )  eia(z-ct) 

V*(Z, y, t )  = vl( y) eia(z-ct) 

and the equation of the interface is taken as 

(3) y = [* = [ , e ia (Z-c t ) .  

In general both eigenvalues, a and c, are complex. Due to the constant cavity 
pressure, the mean flow pressure, p ,  is independent of x. However, a possible 
dependence upon y is included for later use. The equations governing the pertur- 

(4) 
bations then become iau, + avl/ay = 0, 
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where R8, is the Reynolds number based on momentum thickness, UmS2/v. The 
Orr-Sommerfeld eigenequation is obtained by eliminating p1 and u1 from these 
equations. Since the mean velocity distribution, u, changes with x and, pre- 
sumably, with Rs, a complete solution would involve a knowledge of these 
distributions and the computation and tabulation of, say, a as a function of c for 
every x position for the required values of Ran. Only the inviscid solution has been 
attempted here. Moreover, the mean velocity distribution has been approximated 
by the Gaussian form 

w/wc = e - h  2.(~/bY, ( 7 )  

where w = 1 - u, w,(x) = 1 - ( u ) ~ = ~  and b(x) is the half-width of the boundary 
layer (i.e. w = $wc a t  y = b).  This satisfies the boundary condition of zero shear 
stress since (aulay),,, = 0 and has been chosen because of its apparent accuracy 
in the analogous thin plate wake flow (Sato & Kuriki 1961). However, it is 
expected t.0 be least accurate close to separation (Goldstein 1933, Hollingdale 
1940). The function wc(x) can, for the moment, remain unspecified and we used 
as a modified x co-ordinate, equal to unity a t  separation and tending to zero far 
downstream. It follows from the definition of 8, that 

1 
41n2 

Now the inviscid Orr-Sommerfeld equation can be written in the form 

(&k) ( ~ - p v l ) - v l - g ( ; )  = 0,  (9) 

z = y/b; k = (1 -c)/w,.; 7 = ab. (10) 

Since (w/wc) and its second derivative are independent of x (or wc), the eigenvalues 
k, rj are more general than the ‘local’ eigenvalues, a and c,  at a particular 

The boundary conditions upon v1 required for the eigensolution of (9) are as 
follows: (i)  It is convenient to normalize (vl)y=z=o = 1.  (ii) The linearized kine- 
matic condition on y = t* gives 

x(or wc). 

(vl)y=z=o = iatd(u,),=o - CI. (11) 

(iii) The effect of surface tension, 8, and of the centripetal acceleration due to 
longitudina,l radius of curvature of the free surface in the actual flow (denoted 
by R*) are included to yield a more general dynamic condition on y = [*. It is 
assumed that R* gives rise to a pressure gradient ap/ay = u2(8,/R*) in the mean 
flow. Gravitational acceleration is neglected since typical values of the centripetal 
acceleration far exceed it. The dynamic condition is then written as 

where pc is the cavity pressure. With the conventional linear assumptions this 
becomes S 

PSZm 
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Substituting for c1 from (11) and for (pl)y=o from the inviscid form of ( 5 )  using 
(au/ay)y=o = 0 the boundary condition t o  be used in the eigensolution is 

= r = rr+iri, say 

This relates the real and imaginary parts of (dv,/dz),=, to  the parameters S/pS,U2, 
and 6,/R*. (iv) The usual outer boundary condition (Rosenhead 1966) was 
employed 

lim -'+yv = 0. 
z-+m [Z 1 1  

A computer program was written to calculate one of the eigenvalues or k 
given the other and I?. With an initial, guessed value of the unknown eigenvalue 
integrations were performed by the Runge-Kutta method starting at  z = 0. 
Having obtained a value of (av,/az + qv,) a t  large z the estimate was improved and 
the process repeated until the outer boundary condition was obeyed. The inte- 
grations were performed along a contour in a complex plane of z, chosen so as to 
avoid the singular point at 9 = - In k/ln 2. 

5. Theoretical results 
First an extensive series of eigenvalues were obtained for the case in which the 

effects of surface tension and curvature are neglected (i.e. = 0). The results are 
plotted in figure 6 (the subscripts r and i refer to real and imaginary parts) and 
show a form very similar to  those obtained by Betchov &, Criminale (1967) in a 
analogous problem. The singularity around k = 0.24 - 0-17i is clearly of the type 
discussed by those authors. 

I n  the flow under investigation the disturbances are assumed to be growing 
only in space and not in time. Thus the real and imaginary parts of a. c must be 
equal to the non-dimensional frequency, y, and zero respectively. It follows from 
t,he relations (10) that 

(15) 
6 2  1 y = 27Tf - = - [Tr - WC(?jQl?? - T i  hi)] 
u m  b 

and w, = T i / ( T r k i  + T i M ,  (16) 

f being the frequency of the disturbance in the actual flow. Thus each point of 
figure 6 corresponds to purely spatial growth or decay for the frequency, y ,  a,nd 
a t  the 'x position' given respectively by (15) and (16). The spatial rate of ampli- 
fication is given by (1/A) dA/dx = - Ti/b where A is the general amplitude of 
<*, u,, v1 orp,. Replotting the results of figure 6, figure 7 shows how a disturbance 
of a given frequency, y, is amplified (ri = -ve) or suppressed (qi = +ve) as i t  
moves from separation (w, = 1) to  far downstream (w, --f 0).  Three points con- 
cerning the transformation from the k plane to the (w?, y )  plane require further 
comment: (i) The neutral stability point in figure 6 (7 = 1-598, k = 0.6066) 
transforms into the line y = 1.598 (1  - 0.6066 w,)/b. (ii) The line of maximum 
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amplification is given by the locus of points for which (aqi/awc) = 0. (iii) The 
mapping produces a singular point around y = 1-76, w, = 0.95. For values of qi 
less than about - 0.7 the lower branch of the curve turns upward to produce a 
doubly-covered region as indicated by the dashed line for vi = - 0.8. Physically 
this second sheet relates to disturbances of long wavelength (small vt)  and 
wave velocity greater than (and usually very much greater than) U,. For 
the moment the presence of this second sheet is disregarded; further comment 
is made below. 

k, 

FIGURE 6. Eigenvalues k ,  7 for the case I’ = 0. 

If the noise in the boundary layer a t  separation was white (i.e. (aA/ay),=, = 0) 
then it would appear from figure 7 that some frequency around 0.175 would 
receive maximum amplification over the distance w, = 1.0 to 0.95, say. The 
dominance of this ‘preferred ’ frequency would increase with convection down- 
stream since amplitude growth is exponential. Once the neutral point is reached 
(around w, = 0.12) no further amplification would take place. As illustrated by 
the experiments two possibilities arise: ( 1 )  sufficient amplification may occur 
before the neutral position for break up into turbulence to take place; otherwise 
(2) the waves will persist to very far downstream since damping is very small. The 
latter possibility may arise at the lower Reynolds numbers (see 3 7) .  

Since finite amplification will take place over a finite distance it is instructive 
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to integrate to find the total amplification at a particular position, wc. For this 
purpose define q5 as 

where A / A ,  is the ratio of the amplitude at the point wc to that of the noise at 
separation (w, = 1) .  But to perform the integration, knowledge of the function 
w,(x) is needed. If Goldstein’s (1933) formula for a flat plate laminar wake is used, 
i.e. 

R82 w, = s*++s, where s = - 
7r(x + 5 0 )  ’ 

\ 
I I 1 I I I I I I 

1 .o 0.8 0.6 0.4 0.2 
Separation Downstream 

infinity 

WC 

FIGURE 7. The stability results plotted in a graph of frequency, 7, and ‘position’, w,. 

integration leads to the results shown in figure 8. Again this suggests that 
provided (8As/ay)wc=1 = 0 the preferred frequency should be around 0.175; for 
-yc = 0.332 the net amplification at the neutral point is zero. Discussion of non- 
linear effects is postponed until the next section.. Other possible influences 
examined were as follows: (i) Some eigensolutions were obtained with non-zero 
values of r in order to assess the effects of surface tension and curvature. Since 
the relation (14) contains the eigenvalues, computations were performed with 
chosen complex values of I?, the corresponding magnitudes of the parameters 
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SlpS, UZ, and S,IR* being post-calculated. In  particular the effect upon the 
neutral stability line (figure 7) was studied; predictably finite and positive values 
of either or both parameters had a stabilizing effect, the values of y a t  a particular 
w, being lower than for the r = 0 case, But the effects of typical experimental 
values of SlpS, v", (maximum around were indistinguishable on the scale 
of figure 8. The influence of curvature, 6,lR*, was also small; the neutral stability 
line for 6,lR" = 0.01 is shown in figure 8, though experimentally this parameter 
is unlikely to have exceeded 5 x (ii) Two viscous effects upon the eigen- 
solution may be distinguished: (a) the inclusion of the viscous terms to produce 

0.4 I I I I I I 1 I I I 

Y = Y c  

0-3 

Y 0.2 

0.1 

\ 
I I I 1 I I I I I 

1 *o 0.8 0.6 0.4 0.2 
Separation Downstream 

infinity 

FIGURE 8. Integration of the linear stability characteristics yields 
q5 = l/Rd2 In (A/A,)  as a function of y and w,. 

the full Orr-Sommerfeld equation and ( b )  the influence of Reynolds number on 
the velocity distribution, wlw,. Since we are primarily concerned with the 
spatially-growing cases, the first effect is probably small. The results of McKoen 
(1955), Tatsumi & Kakutani (1958) and Kaplan (1964) demonstrate that in the 
analogous wake and jet flows this viscous effect is negligible above about 
Rs, = 150. However the velocity distribution may be sufficiently far from 
Gaussian at  or shortly after separation (e.g. Hollingdale 1940) for the second 
effect to be appreciable particularly at  the lower Reynolds numbers. (iii) The 
spectral distribution of noise in the separating boundary layer (i.e. A,(y))  will 
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have some effect in governing the preferred frequency. The discussion above was 
confined to disturbances relevant to the first sheet in figure 7; that is to say, to the 
treatment of noise having a propagation velocity less than U, and therefore due 
to headform surface roughness, slight instability or irregularity in the attached 
boundary-layer flow, etc. The presence of the second sheet may provoke specula- 
tion as to how and under what conditions acoustic noise, for example, might 
become important. 

6. Comparison of theory and experiment 
In order to correlate the experimental results and compare them with theory, 

some estimate of the momentum thickness at  separation, a,, was required for 
each of the axisymmetric headforms. The integral method of Rott & Crabtree 
(1952) was used in conjunction with theoretical wetted surface pressure distribu- 
tions for the cavitating sphere and disk obtained previously (Brennen 1 9 6 9 ~ )  and 
for the ogive obtained from the source distribution around which that headform 
was designed. The resulting values of I = 8,/[Dv/UT]a were 0.29, 0.061 and 0.746 
for the sphere, disk and ogive respectively. But actual separation from the 
spheres took place some distance downstream of the position predicted by theory 
(Brennen 1 9 6 9 ~ ) .  To make allowance for this the pressure distribution was 
extended by a constant pressure region to the actual separation position, as 
suggested by the experimental evidence (Brennen 1 9 6 9 ~ ) .  The modified values of 
I were 0-30 for the cutaway sphere, 0.31 for the 3in. sphere and 0.31 for the 
19 in. sphere. 

The results of figures 3 and 4 are replotted non-dimensionally in figures 9 and 1 1 .  
But the wavelengths, A ,  were measured at  differing XIS, positions and conversion 
to frequency was desirable for proper correlation; thus estimates of wave velocity 
were sought. For the limited number of cases studied through movie photography 
(see 9 3) the non-dimensional wave velocity was close to unity. Unfortunately the 
flows for which break up occurs at relatively small X / 6 ,  are those for which the 
velocity of the observable waves is likely to be significantly different from unity 
and at  the same time those for which no satisfactory photographic measurement 
of wave velocity could be made (principally in the case of the ogival cavities). 
However, the calculations of the last section indicated that this velocity was 
relatively invariant with XIS, in the range of XIS, for which measurements of 
h were made and that the wave velocities may be given roughly by ( 1  - 0.75 ar). 
Using this, frequencies corresponding to results of figure 9 were plotted in 
figure 10. 

Experimentally observed frequencies in the wake of a thin flat plate are also 
shown in figure 10. The results of Hollingdale (1940) and Taneda (1958) have been 
converted using 8, = 0.664 vL/U,. Sat0 & Kuriki's (1961) measurements being 
made at  w, = 0-692, the conversion involved the relation (8). 

Both types of flow indicate an inviscid frequency fairly close to the 0.175 
suggested by the theory. The flat plate results seem to agree with the theoretical 
predictions of Tatsumi & Kakutani (1958) and Kaplan (1964) on two counts: 
(i) the preferred frequency does appear to be influenced by viscous effects below 
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FIGURE 10. Non-dimensional instability frequencies plotted against R,, ; 0, 3 in. sphere ; 
A, cutaway sphere; m, 13 in. sphere; , ogive; H ,  range of disk operation. Also shown 
are the experimental results for the wake of a, thin flat plate from Sat0 & Kuriki, Taneda and 
Hollingdale (*) and the neutral stability curve for Blasius boundary-layer flow (Lin). 
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about Rs, = 150 and (ii) their critical Rs, of 4 is of the same order as that observed 
by Hollingdale and Taneda ( N 17). 

The cavity surfaoe results exhibit a somewhat greater dependence upon R8, 
which may be due to a greater variation of velocity distribution with R,2 than in 
the case of the flat plate (see last section). The fact that no waves were observed 
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FIGURE 11. The results of figure 4 in dimensionless form: 0,  3 in. sphere; A, cutaway 
sphere; a, l+ in .  sphere; 0, ogive. Lines of constant total amplification, A/& from 
linear theory : 

Neutral stability at 

Line Y In @ I A , )  R8, 5 

A 0.18 20 89 2020 
B 0.20 20 95 1669 
C 0.18 25 111 2525 
D 0.20 25 119 2085 

The positions of fluctuation energy peaks in the non-linear flat plate wake theory of KO, 
Kubota & Lees are shown (- - - -) for three different initial energies, A',,,,. 

on the disk cavities (27 < R,, < 60) suggests a critical Ra2 of around 70. Some 
other experiments with small spherical headforms appeared to confirm this value 
(Brennen 1968). However, in the case of the disk, the greater axisymmetric 
divergence of the free surface following separation may also have had an effect, 
the momentum being dispersed over an increasing area as it is convected 
downstream. 
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7. Wave break up 
The positions of wave break up are plotted in figure 11. In this respect there is 

considerable difference between the flat plate wake and cavity results. When 
Rs, is greater than 80, say, the fluctuations in a flat plate wake reach non-linear 
proportions at about x = 70, or, in other words at  a distance of about 3 wave- 
lengths from the trailing edge (see Taneda; Sat0 & Kuriki). It is clear from the 
photographs that in the cavity flows non-linear effects and wave break up do not 
occur until much further downstream. This is further illustrated by plotting in 
figure 1 1,  the ‘fluctuation energy peak ’ positions from the work of Ko, Kubota & 
Lees (1969). However the ‘energy peak’ position or the appearance of non-linear 
effects will be delayed by a reduction in the initial energy or noise level. It may 
be that in the present experiments the highly stable accelerating boundary layer 
on the wetted surface leads to a ‘separating layer’ which has a considerably 
lower noise level than that of the flat plate. 

A study of the cavity profile indicated that the surface waves broke up when 
their amplitude reached a value of the same order as half a wavelength; t,his 
suggests that non-linear effects were only important in the last phase of the 
fluctuation growth. Integration of the linear stability results through equations 
(17) and (18) yielded the lines of constant total magnification which end at  the 
neutral stability points shown in the table of figure 11. The points of wave break 
up lie predominantly in the band between A / A ,  equal to eZo and eZ6. Even taking 
into account the discussion of the last paragraph, total amplification of this order 
seems unrealistically high. The ratio of the typical amplitude at break up (half 
a wavelength z lO-3ft.) to the typical headform roughness ( -  0-5 x 10-6ft.) is 
about eB  (a figure very close to that quoted by Smith (1957) for the amplification 
up to the first appearance of turbulence in attached boundary layers). Non-linear 
effects will reduce the theoretical figures mentioned above; the results of Sat0 & 
Kuriki and KO, Kubota & Lees indicate that the dx/dw, term in the integral (17) 
can be as small as a third of the laminar-wake value in the non-linear 
region. 

Despite their high A / A ,  values, the lines A ,  B, C and D (figure 11) do appear 
to follow the experimental results in that their neutral stability Reynolds 
numbers are close to those for which break up ceased to occur. 

8. Concluding remarks 
One final observation may be of interest. The wave crestsin figure 1 (f) become 

progressively more inclined to the vertical (or back face of the cutaway sphere) 
as they move downstream (see figure 12). Assuming uniform cavity pressure, the 
vertical gradient of the ‘potential’ cavity surface velocity (U,) should be - q/U& 
g being the gravitational acceleration. Since the wave propagation velocity in this 
case is little different from U,, the rate of increase in 0 (figure 12) with X should be 
d(tan0)IdX = glUZ, which has a value of about 0*197ft.-’ for the conditions of 
figure l(f). This agrees satisfactorily with the slope (0*205ft.-l) of the line 
through measurements taken directly from figure 1 (f) (figure 12). 
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